js金沙国际_金沙国际唯一官网

热门关键词: js金沙国际,金沙国际唯一官网
来自 生命科学 2020-03-24 08:45 的文章
当前位置: js金沙国际 > 生命科学 > 正文

美工程师拟用可控核聚变反应堆“【js金沙国际】人造太阳”

人类研究可控核聚变装置,有朝一日将成为位于轨道上的人造太阳。

洛克希德马丁公司正在研发的小型核聚变装置。

据国外媒体报道,位于美国中西部印第安纳州西拉法叶城的普渡大学的核工程师开发了一个用于核聚变反应堆的新设备。该设备已经被安装在普林斯顿大学的实验性质的核聚变反应堆中,主要用于精确地观察当极高温等离子体在反应堆内表面接触并相互作用的情况。该项工作旨在了解等离子壁的相互作用机制,以帮助核物理学家开发能够承受核聚变反应堆内极端的物理条件,而这里所指的聚变堆就是被称为托卡马克核聚变装置。该项目是由美国能源部通过,美国国家能源部核聚变能源科学办公室具体负责。

三阿尔法能源公司的小型核聚变装置

托卡马克核聚变装置是一个基于使用大规模核聚变反应以产生无限能源的反应堆,也是国际热核聚变实验堆计划。核聚变是通过两个轻核通过核反应形成一个较重的核和一个轻核的过程,该过程中产生的质量亏损将释放出巨大的能量。目前核武库中的氢弹就是一种不可控的核聚变装置,就如太阳表面永不停息的能量释放一样,而如果该能量能被人类所掌握,并在受控情况下进行核反应,明显可以产生近乎无限的清洁能源。核聚变反应是通过如氘和氚的核反应,可取自海水,而核裂变反应产生的放射性污染比核聚变大得多。

很多人认为大型核聚变装置的建造时间长,造价贵,商业化进程不如人意。各国政府主导的核聚变进程让民间高手看不惯了,等不住了,这几年,纷纷踏入核反应圈。

根据核物理学家计算,核聚变反应堆所产生的能量是传统我们所用的核裂变反应堆提供能源的10倍以上,不仅聚变堆具有取之不尽的原料,所带来的污染也很小。据该校核工程的副教授吉恩保罗介绍:目前在核聚变反应堆内,我们是通过磁场来约束高温等离子体的运动,这是因为如此高温的等离子体几乎没有材料能承受得了,所以要用磁场约束它的行为,这也是核聚变反应堆中的最大挑战之一,我们也必须了解等离子体在聚变堆内的对内壁的产生的作用。这也是一个很大的未知数,毕竟我们看不到等离子体与内壁之间具体发生了什么情况。

近日在河北廊坊举行的一次核聚变技术研讨会上,国内知名能源企业新奥集团宣布,未来十年将建一座小型核聚变实验装置。这是首个宣布研发聚变能源的中国民营企业。

目前,普渡大学的研究人员正在普林斯顿大学的等离子体物理实验室,操作着全美最大的球形托卡马克反应堆,这个反应堆也被称为美国国家球形环实验。在具体的实验操作中,核物理的研究人员将会使用材料分析粒子探针连接到托卡马克装置的下部,这些定制的探针必须做得足够的小,以适应反应堆的情况。吉恩保罗核工程副教授认为:这同时也是一个工程学上的壮举,如此小的探针必须匹配几英尺高的仪器套件,这类微型的材料将置入反应堆内部,在高温等离子体与反应堆内壁之间存在,并直接接触到高温等离子体的行为以及所带来的反应。

和平利用核聚变被称作能源的圣杯。近几年,全世界的民营企业纷纷投建核聚变实验装置,或将有突破带给我们惊喜。与官方的大装置不同,它们实验的是小型核聚变。

而开发这种适应与内壁的材料之所以具有非常重要的意义,是因为在极端物理条件的核聚变反应堆内部,还必须用磁场对高温等离子进行行为上的约束,而材料直接接触到如此高的温度,大约在数百万摄氏度,自然还产生各种预想不到的变化,这同时也是核聚变反应堆内壁涂层的主要挑战。而在以前,核物理学家主要通过薄膜材料诱导等高温离子体的行为。

各出奇招,都为了小

吉恩保罗副教授认为:我们目前还不清楚是什么样的机制在其中工作,之前主要是通过Edisonian方法所总结出来的经验定律,也就是通过大量的实验发现或者总结出的适合于核聚变反应堆的材料。而如果我们需要达到完美的核聚变反应,并掌握这种无限能源的技术,就需要清楚其中的所有机理。因而,该探针的工作目的就是要提供涂层材料在高温等离子体条件下如何变化以及等离子体本身相互作用产生变化的信息。这些得到的数据将有助于研究人员开发出新的材料应用于反应堆压力容器内部。

一提到核聚变发电,关键词是托卡马克装置用磁场笼子关锁炽热的核燃料,最著名的实验装置都是这类,包括世界最大聚变反应堆欧洲联合环形加速器、先进实验超导托卡马克和国际热核聚变实验堆计划;除此以外,惯性聚变也时常听说,即用强力激光或X射线聚焦,引爆小颗粒燃料,最著名的是美国国家点火装置。

然而,目前核聚变物理上还没有能维持这些极高温的等离子体和热通量所需的材料,一些材料一旦接触到高温等离子体,就会呗马上分解融化,更不用说来坐核聚变反应堆内部的材料了。因而,研制这些材料,首先要弄清楚如何操作和控制反应堆的内壁,以及高温等离子体与内壁接触时作用的变化。

小型核聚变技术,顾名思义,装置更小。它们大多属于托卡马克,但体量上是ITER规模的几十分之一,建设起来快得多,技术路线也是百花齐放。

目前在分析高温等离子体对内壁材料的影响是将运行大约一年之后,从反应堆内将用于测试的样本取出进行分析。因此,吉恩保罗核工程副教授领导的研究小组也与普渡大学的纳米技术研究中心的研究人员进行合作,以分析在普林斯顿大学托卡马克核聚变装置中使用的内壁测试材料。这也是新型探针所具有的使命,允许核物理学家研究在高温等离子体条件下,内壁上的材料与等离子体间的相互作用的情况,最后我们将新的材料分析数据集成,用于创建新的计算模型,指导新材料的设计,并应用到这个托卡马克装置中。

三阿尔法能源公司从粒子加速器技术获得灵感,将硼元素加入氢燃料中,吸收了核聚变放出的中子这些中子会损害设备,使其带上放射性。其C-2U设备将一个氢气球体加热到了1000万摄氏度,保持了5毫秒。

研究人员布赖恩海姆与肖恩在今年的夏季于普林斯顿大学,花了六个星期设置整套仪器。详细的实验结果在芝加哥举行的第24届核聚变工程研讨会和由普渡大学核工程专业主持的第38届国际等离子体科学会议上进行了论述,具体文档信息将在明年的《等离子体科学》期刊上发表。据吉恩保罗副教授介绍:该设备是可以完全远程控制,通过相关的远程控制软件实现,原则上可以认为在世界的任何地方都可以控制,因而,国际上的核工程研究人员有机会也可以申请使用。

而通用聚变公司用活塞震荡氢燃料,促使聚变。上世纪70年代美国海军项目将核聚变燃料制成等离子磁化球,在液态金属壳中点燃,活塞负责压缩和点燃核燃料。此项目虽然中止,但有人重拾技术,用加拿大政府的小笔津贴,成立了通用聚变公司。2009年开始,通用聚变公司建造了海胆状的、直径1米的钢球,14个加农炮口尺寸的活塞。反应室四周搅动熔铅,创造出中有空隙的涡流,容纳氢燃料。活塞以每秒50米的速度撞击反应室壁上的插件,发送冲击波穿过熔铅,促发小型核聚变。目前这一设备的压缩系统和燃料注射器还在实验阶段,没有实现聚变。

该项目的首席研究员布赖恩海姆,他与吉恩保罗副教授在本科阶段就开始关于核聚变反应堆的相关研究工作。该项目中还涉及到其他核工程专业的学生:博士生张扬和泰勒,以及参与研究人员:肖恩、米格尔冈萨雷斯、萨米和埃里克科林斯。

美国的劳伦斯维尔等离子体物理装置,只花了200多万美元,采用苏联上世纪50年代提出的稠密等离子体焦点路线,电磁场压缩核燃料。核心是两个圆柱形电极,一个包含另一个。外部电极直径18厘米,密封在充满气体的管中。一个电脉冲从外部电极冲向内部电极,产生等离子体环。接着,电流产生的磁场挤压等离子环,成一个微小且致密的球。然后磁场崩塌诱发电场,电子束穿过等离子体,加热到几亿摄氏度高温。目前该设备能达到高温,但粒子密度不够。

再如英国托卡马克能源公司,首创高温超导体的托卡马克,球形构型来自普林斯顿大学,高温超导体来自麻省理工学院。其ST40反应堆可生成1500万摄氏度的等离子体太阳中心温度,创造了私企研究核聚变的纪录;第二台反应堆ST25,2015年连续29小时输出等离子体,创下世界纪录。2018年公司想将反应温度再创新高,达到1亿摄氏度。

美国洛克希德马丁公司的臭鼬工厂也从2010年研发紧凑型聚变反应堆,体积将是之前概念反应堆的十分之一,跟大型卡车的拖车一样大。

群雄逐鹿,草根主导

1950年代以来,苏联和美国的政府项目都重点研究托卡马克,它形似甜甜圈,用磁场箍束几千万摄氏度的等离子体。

本文由js金沙国际发布于生命科学,转载请注明出处:美工程师拟用可控核聚变反应堆“【js金沙国际】人造太阳”

关键词: